Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate

نویسندگان

  • Zhining Tao
  • Atul K. Jain
چکیده

[1] Natural emissions of nonmethane volatile organic compounds (NMVOCs) play a crucial role in the oxidation capacity of the lower atmosphere and changes in concentrations of major greenhouse gases (GHGs), particularly methane and tropospheric ozone. In this study, we integrate a global biogenic model within a terrestrial ecosystem model to investigate the vegetation and soil emissions of key indirect GHGs, e.g., isoprene, monoterpene, other NMVOCs (OVOC), CO, and NOx. The combination of a high-resolution terrestrial ecosystem model with satellite data allows investigation of the potential changes in net primary productivity (NPP) and resultant biogenic emissions of indirect GHGs due to atmospheric CO2 increases and changes in climate and land use practices. Estimated global total annual vegetation emissions for isoprene, monoterpene, OVOC, and CO are 601, 103, 102, and 73 Tg C, respectively. Estimated NOx emissions from soils are 7.51 Tg N. The land cover changes for croplands generally lead to a decline of vegetation emissions for isoprene OVOC, whereas temperature and atmospheric CO2 increases lead to higher vegetation emissions. The modeled global mean isoprene emissions show relatively large seasonal variations over the previous 20 years from 1981 to 2000 (as much as 31% from year to year). Savanna and boreal forests show large seasonal variations, whereas tropical forests with high plant productivity throughout the year show small seasonal variations. Results of biogenic emissions from 1981 to 2000 indicate that the CO2 fertilization effect, along with changes in climate and land use, causes the overall up-trend in isoprene and OVOC emissions over the past 2 decades. This relationship suggests that future emission scenario estimations for NMVOCs should account for effects of CO2 and climate in order to more accurately estimate local, regional, and global chemical composition of the atmosphere, the global carbon budget, and radiation balance of the Earth-atmosphere system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential climate forcing of land use and land cover change

Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present-day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. ...

متن کامل

Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use

[1] The inhibition of biogenic isoprene emission by elevated CO2 as observed in many plant taxa may significantly alter the sensitivity of air quality to global changes. We use a one-way coupled modeling framework to perform simulations under various combinations of 2000 to 2050 changes in climate, natural vegetation, anthropogenic emissions and land use to examine the effect of the CO2-isopren...

متن کامل

Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document

  Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...

متن کامل

Prospects for future climate change and the reasons for early action.

Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ...

متن کامل

The Effect of Land Cover/Land Use Changes on the Regional Climate of the USA High Plains

We present the detection of the signatures of land use/land cover (LULC) changes on the regional climate of the US High Plains. We used the normalized difference vegetation index (NDVI) as a proxy of LULC changes and atmospheric CO2 concentrations as a proxy of greenhouse gases. An enhanced signal processing procedure was developed to detect the signatures of LULC changes by integrating autoreg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005